Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Andrew D. Bond,* Ning Shan and William Jones

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.063$
$w R$ factor $=0.161$
Data-to-parameter ratio $=8.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4,7-Phenanthroline

The structure of 4,7-phenanthroline, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$, has been determined at 180 K . The molecular unit possesses pseudo$C_{2 v}$ point symmetry but does not possess crystallographic mirror symmetry. The molecules form stacks approximately along the b direction, with molecules in adjacent stacks forming an interplane angle of $c a 54^{\circ}$.

Comment

As part of a continuing study of cocrystal formation between organic acids and N -containing organic bases, we have determined the structure of 4,7-phenanthroline, (I), at 180 K . The molecular unit possesses pseudo- $C_{2 v}$ point symmetry, but does not exhibit crystallographic mirror symmetry. Similar observations have been made for the isomeric 1,10-phenanthroline (Nishigaki et al., 1978). In the crystal structure, 4,7-phenanthroline forms planar stacks approximately along the b direction with molecules in adjacent stacks forming an interplane angle of $\mathrm{ca} 54^{\circ}$ (Fig. 2); this contrasts with the observation of two approximately perpendicular layers in 1,10phenanthroline. There is no conclusive evidence for directional $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts in 4,7-phenanthroline, with the shortest $\mathrm{H} \cdots \mathrm{N}$ contacts, $\mathrm{H} 1 \cdots \mathrm{~N} 7^{\mathrm{i}}=2.72, \mathrm{H} 8 \cdots \mathrm{~N} 4^{\mathrm{ii}}=3.00$ and $\mathrm{H} 10 \cdots \mathrm{~N} 7^{\mathrm{iii}}=3.00 \AA$, exhibiting $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ angles of 153.6 , 128.6 and 119.5°, respectively [symmetry codes: (i) $\frac{3}{2}-x$, $-1+y, \frac{1}{2}+z$; (ii) $\frac{1}{2}+x, 1-y, z$; (iii) $\left.\frac{3}{2}-x, y, \frac{1}{2}+z\right]$.

(I)

Experimental

4,7-Phenanthroline was obtained from Aldrich and recrystallized from ethanol.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$	Mo $K \alpha$ radiation
$M_{r}=180.20$	Cell parameters from 6723
Orthorhombic, $P c a 2_{1}$	\quad reflections
$a=19.141(4) \AA$	$\mu=1.0-25.0^{\circ}$
$b=3.8417(4) \AA$	$T=180(2) \mathrm{Km}$
$c=11.564(2) \AA$	Plate, colourless
$V=850.4(3) \AA$	$0.30 \times 0.09 \times 0.05 \mathrm{~mm}$
$Z=4$	
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$	

$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$
$M_{r}=180.20$
Orthorhombic, Pca2
$a=19.141$ (4) A
$b=11.564$ (2) \AA
$c=11.564$ (2) A
$Z=4$
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$

Received 15 December 2000
Accepted 9 January 2001
Online 30 January 2001

Data collection

Nonius KappaCCD diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.975, T_{\text {max }}=0.996$
2186 measured reflections
1099 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.161$
$S=1.09$
1099 reflections
127 parameters
H -atom parameters constrained

812 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-22 \rightarrow 17$
$k=-4 \rightarrow 3$
$l=-13 \rightarrow 10$

The absolute structure was not determined. Friedel opposites merged prior to merging of data in Pca_{2}. H atoms were placed geometrically and allowed to ride during subsequent refinement with an isotropic displacement parameter fixed at 1.2 times $U_{\text {iso }}$ for the C atom to which they are attached.

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $H K L$ $D E N Z O$ and SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1993); software used to prepare material for publication: SHELXL97.

Figure 1
The molecular unit of the title compound showing displacement ellipsoids at the 50% probability level.

We thank the EPSRC for financial assistance with purchase of the CCD diffractometers, and the Cambridge Overseas Trust and British Council for funding (NS).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Otwinowski Z. \& Minor W. (1997). Methods Enzymol. 276 307-316.
Nishigaki, S., Yoshioka, H. \& Nakatsu, K. (1978). Acta Cryst. B34, 875-879.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Figure 2
Projection onto (100) showing molecular stacks tilted with respect to each other with molecules in adjacent stacks forming an interplane angle of $c a 54^{\circ}$.

